A Scalable Global Model for Summarization

نویسندگان

  • Dan Gillick
  • Benoit Favre
چکیده

We present an Integer Linear Program for exact inference under a maximum coverage model for automatic summarization. We compare our model, which operates at the subsentence or “concept”-level, to a sentencelevel model, previously solved with an ILP. Our model scales more efficiently to larger problems because it does not require a quadratic number of variables to address redundancy in pairs of selected sentences. We also show how to include sentence compression in the ILP formulation, which has the desirable property of performing compression and sentence selection simultaneously. The resulting system performs at least as well as the best systems participating in the recent Text Analysis Conference, as judged by a variety of automatic and manual content-based metrics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture

Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...

متن کامل

Knowledge Summarization for Scalable Semantic Data Processing

Scalable semantic data processing has become a crucial issue for practical applications of the Semantic Web. In this paper, we propose an approach of scalable semantic data processing by knowledge summarization. The main idea is to express scalable semantic data on different abstraction and summarization levels to reduce their cardinalities, so that they can be processed efficiently. The notion...

متن کامل

EXTRACTION-BASED TEXT SUMMARIZATION USING FUZZY ANALYSIS

Due to the explosive growth of the world-wide web, automatictext summarization has become an essential tool for web users. In this paperwe present a novel approach for creating text summaries. Using fuzzy logicand word-net, our model extracts the most relevant sentences from an originaldocument. The approach utilizes fuzzy measures and inference on theextracted textual information from the docu...

متن کامل

Text Summarization Based on Terminological Logics

We present an approach to text summarization that is entirely rooted in the formal description of a classification-based model of terminological knowledge representation and reasoning. Text summarization is considered an operator-based transformation process by which knowledge representation structures, as generated by the text understander, are mapped to condensed representation structures for...

متن کامل

Extractive Text Summarization using Neural Networks

Text Summarization has been an extensively studied problem. Traditional approaches to text summarization rely heavily on feature engineering. In contrast to this, we propose a fully data-driven approach using feedforward neural networks for single document summarization. We train and evaluate the model on standard DUC 2002 dataset which shows results comparable to the state of the art models. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009